THE DUALITY BETWEEN ASPLUND SPACES AND SPACES WITH THE RADON-NIKODYM PROPERTY

BY CHARLES STEGALL

ABSTRACT

A Banach space X is an Asplund space (a strong differentiability space) if and only if X^* has the Radon-Nikodym property.

We give here a construction that, combined with results of [1, 4, 9, 10, 11], proves the following:

THEOREM 1. Let X be a Banach space. Then X^* has the Radon-Nikodym Property (RNP) if and only if X is an Asplund space.

A Banach space Y has RNP if for every probability space (S, Σ, μ) , every $m: \Sigma \to Y$ that is countably additive, μ -continuous, of bounded variation, is representable by a Bochner integrable function. A function $f: S \to Y$ is Bochner integrable if it is Borel measurable, essentially separably valued, and $\int ||f(s)|| d\mu < +\infty$.

A Banach space Y is an Asplund space (what Asplund called a Strong Differentiability Space) if every continuous, real valued, convex function defined on an open subset of Y is Fréchet differentiable on a dense G_{δ} subset of its domain.

The main result we need is the following:

THEOREM 2. Let X be a Banach space. Then X^* has RNP if and only if for every separable, linear subspace Y of X, Y^* is separable (in the norm topology).

The sufficiency part of this theorem is basically due to R. S. Phillips (see [7]) and in the form stated here to Uhl [14]. The necessity part is due to the author [13].

Following [9] we shall say that a conjugate Banach space X^* is a DA space if Received May 7, 1977

every weak* compact, convex subset C of X^* is the weak* closed, convex hull of those points in C that are strongly exposed by some element of X. A point x in X strongly exposes C if there exists an x^* in C such that $x^*(x)$ is the supremum of x on C and if x^* in C and x^* (x) x^* converges in norm to x^* .

In [1] Asplund proved that if X is Asplund then X^* is a DA space. (This also follows from the main result of [13].) Recently, Namioka and Phelps [9] (also Collier [4]) have shown that if X^* is a DA space then X is an Asplund space.

In [11] (see also [2] for a stronger result) the following is proved: if, given any weak* compact, convex subset C of X^* with the property that for every $\varepsilon > 0$ there exists an x in X and a t > 0 such that

$$\{x^* \in C: x^*(x) > \sup_{x^* \in C} x^*(x) - t\}$$

has diameter less than ε , then X^* is a DA space. It follows easily from a result of Rieffel [12] that if X^* is a DA space then it has RNP. Thus we only need to prove the following:

PROPOSITION. Suppose there exists a weak * compact, convex subset C of X^* , a c > 0, such that for every $x \in X$, every t > 0,

$$\operatorname{diam} \{x^* \in C : x^*(x) > \sup_{x^* \in C} x^*(x) - t\} > c.$$

Then there exists a separable linear subspace Y of X such that Y^* is not norm separable.

PROOF. We shall assume that C is a subset of the unit ball of X^* and 0 < c < 1. For $x \in X$, let

$$p(x) = \sup\{x^*(x): x^* \in C\}$$

and for t > 0 let

$$S(x,t) = \{x * \in C : x *(x) > p(x) - t\}$$

be an open slice of C. Choose any x_0 in X and any t_0 such that $0 < t_0$. We shall show that there exist e_1^* and e_2^* in $S(x_0, t_0)$ that are extreme points of C and $||e_1^* - e_2^*|| > c/4$. Choose e^* any extreme point of C in $S(x_0, t_0)$ (by the Krein-Milman theorem). Suppose all extreme points of C are contained in the union of $C \setminus S(x_0, t_0)$ and $B(x^*, c/4)$, the closed ball of radius c/4 and center x^* . Again, by the Krein-Milman theorem, since both sets are weak* compact and convex, each point in C is on a line segment running between them. Let $s = t_0 c/9$ and suppose $x^*(x_0) > p(x_0) - s$. If $x^* = ux_1^* + (1 - u)x_2^*$ where $x_1^*(x_0) \le p(x_0) - t_0$ and $||x_2^* - e^*|| \le c/4$. Then

$$p(x_0) - s < x^*(x_0) = ux_1^*(x_0) + (1 - u)x_2^*(x_0)$$

$$\leq u(p(x_0) - t_0) + (1 - u)p(x_0)$$

$$= p(x_0) - ut_0.$$

Therefore, $u < s/t_0 = c/9$. So

$$||x^* - e^*|| \le u ||x_1^* - e^*|| + (1 - u)||x_2^* - e^*||$$

 $\le 2c/9 + c/4.$

This proves that the diameter of $S(x_0, s)$ is less than c, which is a contradiction. Suppose then that e_1^* and e_2^* are extreme points of C in $S(x_0, t_0)$. By the Hahn-Banach theorem, choose y_0 in X, $||y_0|| = 1$, such that $(e_1^* - e_2^*)(y_0) > c/4$. Let

$$U_1 = S(x_0, t_0) \cap S(y_0, p(y_0) - e_1^*(y_0) + c/12),$$

$$U_2 = S(x_0, t_0) \cap S(-y_0, p(-y_0) + e_2^*(y_0) + c/12).$$

Then $e_i^* \in U_i$ for i = 1, 2 and they are strongly extreme points of C (see [3]). There exists $y_{1,i} \in X$, $t_{1,i} > 0$ such that

$$e_i^* \in S(y_{1,i}, t_{1,i}) \subseteq U_i$$
 for $i = 1, 2$.

Also, if $x^* \in U_i$ then

$$(x_1^* - x_2^*)(y_0) > c/12.$$

Repeat this construction inside both $S(y_{1,i}, t_{1,i})$ etc. obtaining

$$\{y_{n,i}\}$$
 $n = 1, 2, \dots, i = 1, 2, \dots, 2^n;$
 $t_{n,i} > 0;$
 $\{x_{n,i}\}$ $n = 1, 2, \dots, i = 1, 2, \dots, 2^n;$

such that

(i)
$$S(y_{n+1,2i-j}, t_{n+1,2i-j}) \subseteq S(y_{n,i}, t_{n,i})$$
 for $j = 0, 1$;

(ii)
$$\sup\{x^*(x_{n,i}): x^* \in S(y_{n+1,2i-1}, t_{n+1,2i-1})\} + c/12$$

$$\leq \inf\{x^*(x_{n,i}): x^* \in S(y_{n+1,2i}, t_{n+1,2i})\}.$$

If we let Y be the smallest, closed, linear subspace of X containing $x_{n,i}$ then it is easy to see that

$$\left\{x^* \middle|_{Y} : x^* \in \bigcap_{n=1}^{\infty} \bigcup_{i=1}^{2^n} \overline{S(y_{n,i}, t_{n,i})}\right\}$$

is a non norm separable subset of Y^* .

There are numerous corollaries to this result:

COROLLARY 1. If X has an equivalent Fréchet differentiable norm or a C_1 function with bounded support then X is an Asplund space.

It is easy to see using the Bishop-Phelps theorem and a result of Leduc (see [10]) that in either case X^* has RNP. Corollary 1 was also obtained in a different way by Ekeland and Lebourg [6].

If we replace Fréchet differentiable by Gateaux differentiable in the definition of Asplund spaces we obtain the weak-Asplund spaces. The following corollary is almost obvious.

COROLLARY 2. Let X be an Asplund space. Suppose $T: X \to Y$ is a continuous linear operator whose range is dense in Y. Then Y is a weak-Asplund space.

This corollary contains a classical result due to Mazur [8] (for any separable Banach space Y) and a result of Asplund for weakly compactly generated spaces [1] (using the factorization theorem of [5]).

REMARKS. By a more careful use of the results of [13], classical results on Fréchet differentiability, and a more complicated version of our Proposition one can prove a much more general result than Theorem 1. This will appear elsewhere.

ACKNOWLEDGEMENT

The research for this paper was done while the author was a member of Sonderforschungsbereich 72 der Universität Bonn.

REFERENCES

- 1. E. Asplund, Fréchet differentiability of convex functions, Acta Math. 121 (1968), 31-47.
- 2. J. Bourgain, to appear.
- 3. G. Choquet, Lectures on Analysis, W. A. Benjamin, New York, 1969.
- 4. J. B. Collier, A class of strong differentiability spaces, Proc. Amer. Math. Soc., to appear.
- 5. W. J. Davis, T. Figiel, W. B. Johnson and A. Pelczynski, Factoring weakly compact operators, J. Functional Analysis 17 (1974), 311-327.
 - 6. I. Ekeland and G. Lebourg, to appear.
- 7. A. Grothendieck, *Produits tensoriels topologiques et espaces nucleaires*, Mem. Amer. Math. Soc. 16 (1955).

- 8. S. Mazur, Über konvexe Mengen in linearen normierten Räumen, Studia Math. 4 (1933), 70-84.
- 9. I. Namioka and R. R. Phelps, Banach spaces which are Asplund spaces, Duke. Math. J. 42 (1975), 735-750.
- 10. R. R. Phelps, Support cones in Banach spaces and their applications, Advances in Math. 13 (1974), 1-19.
 - 11. R. R. Phelps, Dentability and extreme points, J. Functional Analysis 17 (1974), 78-90.
- 12. M. A. Rieffel, The Radon-Nikodym theorem for the Bochner integral, Trans. Amer. Math. Soc. 131 (1968), 466-487.
- 13. Charles Stegall, The Radon-Nikodym property in conjugate Banach spaces, Trans. Amer. Math. Soc. 206 (1975), 213-233.
- 14. J. J. Uhl, A note on the Radon-Nikodym theorem for Banach spaces, Rev. Roumaine Math. 17 (1972), 113-115.

MATHEMATISCHES INSTITUT
BISMARCKSTRASSE 1½
UNIVERSITÄT ERLANGEN-NÜRNBERG
D-8520 ERLANGEN, W. GERMANY